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Abstract – 
One of the most fundamental questions in Biology or Artificial Intelligence is how the human brain 

performs mathematical functions. How does a neural architecture that may organise itself mostly through 

statistics, know what to do? One possibility is to extract the problem to something more abstract. This becomes 

clear when thinking about how the brain handles large numbers, for example to the power of something, when 

simply summing to an answer is not feasible. In this paper, the author suggests that the maths question can be 

answered more easily if the problem is changed into one of symbol manipulation and not just number counting. 

If symbols can be compared and manipulated, maybe without understanding completely what they are, then the 

mathematical operations become relative and some of them might even be rote learned. The proposed system 

may also be suggested as an alternative to the traditional computer binary system. Any of the actual maths still 

breaks down into binary operations, while a more symbolic level above that can manipulate the numbers and 

reduce the problem size, thus making the binary operations simpler. An interesting result of looking at this is the 

possibility of a new fractal equation resulting from division, that can be used as a measure of good fit and would 

help the brain decide how to solve something through self-replacement and a comparison with this good fit. 

 
Key-Words: artificial intelligence, symbolic, number system, fractals, computer system. 

Received: September 2, 2020. Revised:  December 23, 2021. Accepted:  December 28, 2021. Published: 

December 31, 2020. 
 

 

1 Introduction 
One of the most fundamental questions in 

Biology or Artificial Intelligence is how the human 

brain performs mathematical functions. How does a 

neural architecture that may organise itself mostly 

through statistics, know what to do? There is 

increasing understanding about the analogue 

properties of neurons [2][16][17]. That is, they can 

send a variety of signals and not just the traditional 

on-off model. While that is the case, computers still 

use the binary system because it is reliable and more 

easily understood. Therefore, when solving the 

mathematical problem, the binary system still has to 

be considered as the main player and so the decimal 

system, for example, has to be translated over to it.  

How a neural system would do this is still not 

very well understood. Then when it goes to 

processing the numbers, the system would need to 

understand quite complex operations that are exact 

and iterative. One possibility therefore, is to extract 

the problem to something more abstract. This 

becomes clear when thinking about how the brain 

handles large numbers, for example to the power of 

something, when simply summing to an answer is 

not feasible. A computer can perform this maths 

with logic gates and so the question is, can the brain 

components do the same thing? Missing from this 

argument is the fact that the neurons are expected to 

perform in a completely blind manner, when in fact, 

the human body provides senses and a nervous 

system to give some type of guidance. Therefore, to 

start with, images of the number system can give 

some sort of base to work from. 

In this paper, the author suggests that the maths 

question can be answered more easily if the problem 

is changed into one of symbol manipulation and not 

just number counting. If symbols can be compared 

and manipulated, maybe without understanding 

completely what they are, then the mathematical 

operations become relative and some of them might 

even be rote learned. To anchor the solution 

therefore, the brain can use images of the number 

system that would be learned before the maths itself. 

For the decimal number system, for example, the 

brain learns the symbols ‘0’ to ‘9’ first. Everything 

after that is the manipulation of these symbols. The 

system to be proposed in this paper may also be a 

suggestion for an alternative to the traditional 

computer binary system. Any of the actual maths 

still breaks down into binary operations, while a 

more symbolic level above that can manipulate the 

numbers and reduce the problem size, thus making 

the binary operations smaller in magnitude. 

Essentially, the higher level breaks the problem 

down into smaller chunks that is understood to 

certain orders of magnitude. The binary maths is 

then performed only on what is left. This paper 

therefore proposes a theory for how mathematics can 

be carried out through the manipulation of grids 

and/or arrays of these symbols, in a system that may 

be closer to what the human brain uses. While the 

theory has arisen by thinking about the human brain, 
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it will simply be called a system in the rest of the 

paper and a reference will not be made to the human 

brain each time. An interesting result of looking at 

this is the possibility of a new fractal equation 

resulting from division, that can be used as a 

measure of good fit and would help the brain decide 

how to solve something through self-replacement 

and a comparison with this good fit. 

The rest of the paper is organised as follows: 

Section 2 describes the theory of the mathematical 

process. Section 3 gives an algorithm for each 

mathematical operation – add, subtract, multiply and 

divide. Section 4 discusses a new equation of good 

fit that may be a fractal and also results from the 

number system. Section 5 describes some related 

work, while section 6 gives some conclusions on the 

work. 

 

2 Theory 
The theory starts with the assertion that all 

numbers are combinations of the base number set. 

To solve the problem therefore, you need to break it 

down into problems over this base number set that 

are either very small or are easier to process. 

Therefore, instead of solving a small set of large 

number problems, it gets broken down into a large 

set of smaller number problems with some automatic 

transpositions. These smaller problems map more 

closely to the symbol set that the system 

understands, even to the point where some small 

operations are simply rote learned. The binary array 

is replaced by a grid or table format for this solution, 

with each column representing a different decimal 

digit. A second higher level then converts what 

would be iterative counts into more singular 

transposition operations that require some 

understanding at the symbolic level. 

 

2.1 Bitwise Grid 
The first part of the system is the bitwise grid that 

represents the number system itself, shown in Figure 

1. The grid is the size of the number set horizontally, 

and then vertically it represents orders of magnitude 

over the base value. For the decimal number system 

therefore, the unit numbers 0 to 9 are at the bottom 

level, then the 10’s from 10 to 90 at the second level, 

the 100’s are at the third level and so on, to as far as 

is required.  

 

 

 

OM 1 2 3 4 5 6 7 8 9 10 

7 0 1 2 3 4 5 6 7 8 9 

6 0 1 2 3 4 5 6 7 8 9 

5 0 1 2 3 4 5 6 7 8 9 

4 0 1 2 3 4 5 6 7 8 9 

3 0 1 2 3 4 5 6 7 8 9 

2 0 1 2 3 4 5 6 7 8 9 

1 0 1 2 3 4 5 6 7 8 9 

Units 0 1 2 3 4 5 6 7 8 9 

 

Figure 1. Bitwise Grid. Moving vertically changes the order by the number system base, 

horizontally changes the number by a unit at that level. 

 

 
The mathematical process then requires that 

numbers are broken down into whole base parts and 

remainders, where whole base parts can be subject 

to transpositions and most of the actual maths takes 

place over the remainder parts. Breaking the 

numbers down means that the process is now 

distributed and different areas of the table would be 

used for the single operation. The number parts may 

also be indexed so that they can be consistently 

updated and re-joined at the end. The transpositions 

can require a number to move to a neighbouring cell 

in any of the 4 directions, or moving up/down a level 

if it moves off the right/left edges of the table. After 

each phase, cells on the same level are added 

together and if any phase produces new numbers, 

then they can be similarly broken down and the 

process repeated. After the maths is completed, the 

result is then to re-join these indexed parts. This is 

the symbolic replacement of zeros in the result by 

non-zeros from any other part of the number, as 

described in the following sections. When using this 

table, rows are counted from the bottom-up and 

columns from left to right. So, for example, Units 

would be in row 1, and the cell (row, column) [3, 5] 

would represent the number 4000. 
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2.2 Separate a Number into Parts 
A lot of the usefulness of this system is the ability 

to recognise the orders of magnitude and therefore 

remove that from the calculation. The maths then 

takes place over sets of smaller numbers only. To do 

this, any larger number needs to be split-up into 

parts, which represent each order of magnitude that 

it has. This is very easily done simply by creating a 

new number for every non-zero digit and replacing 

any removed digits with 0. For example, the number 

12045 would produce the number parts: 10000, 

2000, 40 and 5. This should be done both for the 

number being operated on and the operand. 

 

2.3 Orders of Magnitude 
The system only performs maths over small 

whole numbers, apart from the division operation. If 

the number is large, then it is represented by a higher 

level in the table. For example, if the number is 

10000, then in Figure 1, it is placed in the cell at row 

5 and column 2, cell [4, 2]. Division and subtraction 

can lead to negative results and so each number, 

represented by a cell in the grid, can store a negative 

sign as well. In division, for example, the positive 

order of magnitude may relate to the size of what the 

whole integer part would be and the negative order 

of magnitude would relate to how many orders the 

fractional part needs to be moved to be that whole 

number. For example, if the number is 10000.2, then 

it would be assigned to the cells [5, 2] (instead of [4, 

2]) and also [0, 2] (for the 2 units). A negative order 

of magnitude of 1 is then stored with the first 

(highest order) cell. Maths would be carried out on 

this as normal, but at the end, the negative order of 

magnitude will move the decimal point to the left 

again, by that number of places. 

 

2.4 Base Number Transpositions 
The second part of the system is to use the table 

of Figure 1 to do a transposition. A number is 

changed, either by a unit value, or an order of 

magnitude of the number base, depending on the 

mathematical operator.  

• To transpose by an order of magnitude requires 

that it is wholly divisible by the base number, in 

this case, wholly divisible by 10.  

• To transpose by a unit requires that the numbers 

are at the same level, or on the same row in the 

table. 

• The maths for any transposition makes use of the 

non-zero digits, represented by the cell value 

and always located on the left-hand side of any 

number. 

 

Then the transposition is automatic. Considering 

the mathematical operators of add, subtract, multiply 

and divide therefore, the table of Figure 1 would be 

used as follows: 

• Add: to add a unit number at the same level of 

the table row, move the number to the right. For 

example, adding 3 to 5, moves the number to 

cell with the value 8 at the Units level, cell [0, 

9]. Adding 100 to 200, moves the number to cell 

with the value 3 at the 100’s level, cell [2, 4]. 

• Subtract: similarly, to subtract a unit number at 

the same level of the table row, move the 

number to the left. 

• Multiply: to multiply by the base number, move 

the number vertically upwards in the table. So, 

to multiply 10 by 100, moves the 10 cell up two 

levels in the table, as indicated by 2 zeros in the 

multiplication number. 

• Divide: similarly, to divide by the base number, 

move it down levels in the table. 

 

As the mathematics takes place at the left-hand 

side of the number, a note of the number of zeros can 

be made, for example, and then any sum or product 

result can replace the LHS non-zero part, while the 

zero digits remain the same. The level therefore 

defines the number of zeros and the maths takes 

place over the non-zero digits only.  

The system is ideally setup for whole number 

operations in the positive integer range, but fractions 

and negative numbers have to be accommodated. 

This would typically require manipulation using 

negative orders of magnitude instead of positive 

ones. 

 

3 Mathematical Operators 
This section lists some algorithms that each of the 

four mathematical operations might use. They are 

not definitive and could be changed, so this is only 

an example. The maths occurs across each row in the 

table separately, with the most complicated 

operations moving cells off the side of a row to a 

new row above or below the current one. Division is 

the only problem and it can require larger 

calculations. The actual maths is then switched over 

to a binary and traditional format, with the result 

being switched back again. The numbers in each row 

are then re-joined together to give a final total. If the 

process leads to intermediate results, then those 

numbers can replace the original set and be split 

again, before repeating the process. When re-joining 

and summing, it is simply a matter of placing the 

non-zero digits from each result part in the final 
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number at the appropriate place. Appendix A traces 

through some examples of using these algorithms. 

 

3.1 Sums Over Numbers with Negative 

Orders of Magnitude 
If doing sums over numbers with negative orders 

of magnitude, then the orders need to be made the 

same first, which would be the largest negative order 

value. Any numbers with a smaller order are filled 

out with zeros on their right-hand side. For example, 

consider the sum 0.7 + 0.05. This would be 

represented in the system as 7 (-1) and 5 (-2), where 

the brackets are the negative orders of magnitude, 

but these numbers are currently incompatible and 

would need to be re-written as 70 (-2) + 5 (-2) = 75 

(-2) = 0.75. 

 

3.2 Addition 
With addition, the sum can result in numbers 

larger than the row level the maths is performed on. 

When this happens, the number needs to be split 

again into a wholly divisible part for the next level 

up and one for the current level. These two levels 

then need to be re-calculated with the split number 

and any other number at the level above. The 

following algorithm can perform the addition 

operation: 

 

1) Split the number Xi and place the parts at each 

level in the table. 

2) Split the addend Aj and place the parts at each 

level in the table. 

3) While any table level (row) has more than 1 cell 

entry: 

a) From the lowest order of magnitude to the 

highest, find the next table level L with more 

than 1 cell entry: 

i) Add the digits of cells with entries at level 

L together. 

ii) If the new number has more than 1 digit, 

then it can be split again. 

(1) The split produces new numbers for 2 

table levels – the current level L and the 

level immediately above (L+1), and so 

these levels need to be re-calculated. 

(2) Place the numbers for those levels into 

the appropriate cells again.  

4) Re-join all of the cell numbers to create the 

number result. 

 

3.3 Subtraction 
With subtraction, the sum can result in negative 

numbers and this is usually managed by borrowing 

a digit from the next order above. With the table 

format, this is quite easily realised by changing two 

cell numbers and adding new entries in some other 

cells. When this happens, there may need to be more 

calculations over the new cell entries, but it is largely 

still just binary cell processing without too much 

additional calculation. Subtraction can also give a 

final result that is negative, or an intermediate result 

that requires a positive number to be added to a 

larger negative one. When this happens, it is easier 

to switch the signs of the level cells involved, for the 

calculation, and then switch the result sign back 

again. To keep track of the signs the number parts 

may need to be indexed. It is noted that these 

algorithms may appear to be quite complicated and 

traditional binary mathematics can do this operation 

simply by reversing the sign of the subtrahend and 

then adding the two numbers. While this algorithm 

is more involved, the question would be if it can still 

be mostly automated, as each individual step is 

relatively simplistic. The following algorithm can 

perform the subtraction operation: 

 

1) Split the minuend Xi and place the parts at each 

level in the table. 

2) Split the subtrahend Sj and place the parts at each 

level in the table. 

3) While any table level has more than 1 cell entry: 

a) From the highest order of magnitude to the 

lowest, find the next table level L with more 

than 1 cell entry: 

i) Check if the minuend cell digit Cxil is 

smaller than the subtrahend cell digit Csjl.  

ii) If the cell digit is smaller, a digit needs to 

be borrowed from a higher level. 

(1) If a higher level has a minuend cell: 

(a) Move to the next level with a 

minuend cell Cxil2. 

(b) Add the digit 1 in-front of the 

current cell digit Cxil and move the 

minuend cell Cxil2 one place to the 

left. 

(c) For each level between the two 

levels L and L2, add a new entry in 

the ‘9’ digit cell, column 10. 

(d) This should in fact be the only 

minuend entry at those levels, but 

the subtrahend may also have an 

entry. 

(2) If a higher level does not have a 

minuend cell, then store the negative 

calculation as the result. 

iii) For the current level L, subtract the 

subtrahend cell Csjl digit from the minuend 

cell Cxil digit(s) and store the result. The 

result will be a single digit. 
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4) While there are both negative and positive signed 

digits: 

a) From the highest order of magnitude to the 

lowest, find the next two consecutive table 

levels with a cell sign change. 

b) This should be a higher level L2 with the 

negative sign and a lower level L with the 

positive sign. 

c) Index these cell numbers and reverse their 

signs. 

d) Perform a subtraction over these two levels 

only. That will require a borrow operation to 

create a maximum valued minuend at level L, 

with a negative sign, and move the existing 

digits one cell left.  

e) The subtraction then takes place over the new 

minuend value and the subtrahend value at 

level L. 

f) Switch the cell signs back again. This should 

make them both negative.  

5) Re-join all of the cell numbers to create the 

number result. 

 

3.4 Multiplication 
Multiplication uses a bitwise operation of 

moving the number cells up levels depending on the 

order of magnitude of the multiplier. It is then 

required to perform a product sum of the non-zero 

digits in the multiplicand and multiplier, and replace 

the non-zero digits in the result part with these: 

 

1) Split the multiplier M into parts. 

2) From the highest order of magnitude to the 

lowest for each multiplier part Mj: 

a) Split the multiplicand X into parts. 

b) From the highest order of magnitude to the 

lowest for each multiplicand part Xi: 

c) Place multiplier part Mj in the appropriate 

table cell Cmj. 

d) Place multiplicand part Xi in the appropriate 

table cell Cxi. 

i) Move the multiplicand cell Cxi vertically 

upwards, relative to the order of magnitude 

of the multiplier cell Cmj. 

ii) Multiply the cell digits in the multiplicand 

and multiplier together and replace the 

multiplicand digit Cxi by them. 

iii) If the cell number Cxi has more than 1 digit, 

then it can be split again. 

(1) The split produces new numbers for 2 

table levels – the current level L and the 

level immediately above (L+1), and so 

these levels need to be re-calculated. 

(2) If there is now more than 1 

multiplicand cell at a level, then this 

requires an Addition operation at that 

level, which may move the cell digits 

again. 

(3) After these operations, the process can 

continue to the next multiplicand level. 

e) Save the set of cell values for the multiplier 

part Mj. 

3) Add all of the saved cell values for each 

multiplier part and perform an addition on them 

at each level. 

4) Re-join all of the cell numbers to create the 

number result. 

 

3.5 Division 
As should be expected, division is the most 

difficult operation. Division uses a bitwise operation 

of moving the number cells down levels depending 

on the order of the multiplier. It is then required to 

perform a division sum of the non-zero digits in the 

dividend and divisor, and replace the non-zero digits 

in the result with these. The number parts are then 

re-joined to give the result. With division however, 

it is not possible to split the divisor into parts, but it 

is still possible to split the dividend into parts and 

partially reduce the number of calculations as 

follows: 

 

1) While there is a dividend number to process: 

a) Split the dividend D into parts. 

b) The divisor has to be considered as a whole 

number, so place it in the cell with exactly that 

value or the next cell immediately above the 

value, for comparison purposes. 

c) From the highest order of magnitude to the 

lowest for each dividend part Di: 

i) Move the dividend part Di vertically 

downwards, until it is at a cell immediately 

above the divisor cell. 

ii) Do the division of the divisor on the 

moved dividend part (using binary 

computations). 

(1) The result of the calculation is the 

division number plus the order of 

magnitude that was removed. Store 

both for the result. 

(2) If the division produced a remainder, 

then store that with its correct order of 

magnitude. 

d) After dividing all of the dividend parts by the 

divisor, add their division results together, 

including the orders of magnitude, for a 

division total. 

e) Add all of the remainder values together, 

including the orders of magnitude, and set this 

to be the new dividend value. 
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f) Repeat the whole process while the divided is 

larger than the divisor. 

2) Any value that is left is the remainder of the 

division. 

 

 

4 Division as a Fractal 
Division might be looked at as a measure of fit. 

How well does the divisor fit into the dividend? If 

considering it this way, then there might not be a 

precise numerical measurement, but judgement 

about a goodness of fit can be made on what could 

be more abstract types of object. What would this 

judgement be for? If there is some amount of a 

resource, energy or ensemble for example, then it 

would be helpful to know how best to use it. If it is 

used-up by a single entity, other entities would be 

left out and so it can provide a measure of constraint 

over how best to fit the available entities into the 

available resource. The division problem of this 

paper would work best if the divisor could also be 

split up into parts. Unfortunately, there are problems 

when trying to do that, which is especially true when 

thinking about prime numbers. For example, the 

problem of 425 / 23 = 18.48 has a prime number as 

the divisor. The dividend can be split into 400, 20 

and 5, but the divisor has to stay as it is, as described 

in section 3.5. Considering splitting the divisor 

however has led to a type of chain equation, where 

the result of one part is the dividend to be measured 

by the next part. The chain equation does involve 

splitting the divisor up into parts, but there is a catch 

to it that is described shortly.  

So firstly, what values would the divisor value of 

23 be split into? In fact, it can be split into anything, 

so long as the parts sum up to the original total of 23. 

In Equation 1 for example, the divisor is split into 

the values 13 and 10. The following chain equation 

can then be used to perform the division: 

 

1.1.  425 / 13 = 32.69 

1.2.  32.69 * (10 / 23) = 14.21 

1.3.  32.69 – 14.21 = 18.48 

 

Equation 1. Chain equation for Division with 2 

divisor parts. 

 

If the divisor is split into 3 parts, say 12, 9 and 2, 

then Equation 2 gives the chain equation that will 

produce the same result. But the catch in the problem 

is now clear – the whole divisor number is required 

at the second division stage each time and so it 

cannot be got rid of completely. But because the 

original divisor is part of the chain equation, it would 

be possible to replace it again with a version of the 

chain equation. If you do that using exactly the same 

numbers, then they cancel each other out and leave 

only the whole divisor, but the number sequences 

could also be different each time and the process of 

replacement with something self-similar looks a bit 

like a fractal equation [4], shown in Equation 3. 

 

2.1.  425 / 12 = 35.416 

2.2.  35.416 * (9 / 23) = 13.858 

2.3.  13.858 * (2 / 9) = 3.079 

2.4.  35.416 – 13.858 – 3.079 = 18.48 

 

Equation 2. Chain equation for Division with 3 

divisor parts. 

 

Dividend / d1 = r1 

r1 * d2 / Divisor = r2 

r2 * d3 / d2 = r3 

r3 * d4 / d3 = r4 

... 

where  

d1 + d2 + d3 + d4 … = Divisor 

and 

r1 - r2 - r3 - r4 ... = Result. 

 

Equation 3. Chain equation for Division in a 

general sense. 

 

So how might the equation be used in practice? 

What if the original quantity is unknown and cannot 

be properly measured, but divisor parts can be 

measured. If the chain equation is calculated and 

gives some result plus the original unmeasured part, 

then maybe the chain result can be compared with 

the original problem for similarity. If they are still 

similar, then the chain equation has not altered the 

original problem and it is a good fit or solution for 

it. This could be especially true with something like 

the brain, where patterns cycle in sequences and so 

the fit is not just once, but over many iterations. 

 

5 Related Work 
Symbolic computing was recognised early on as 

important to Artificial Intelligence, where a recent 

review is given in [9].  Some of the following text is 

taken from [8], Chapter 2: John McCarthy tried to 

introduce learning into a computer program, to allow 

it to reason like a human. His ultimate objective was 

to write a program that learned from experience as 

well as a human does. Along with Marvin Minsky 

they tried to design a system based on the principle 

that it has common sense if it can deduce for itself 

consequences from what it is told and what it already 

knows. They chose to base the system on a logic-
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based language called Lisp [11]. This is a high-level 

language of functions and nested functions over 

symbolic expressions. Some type of hierarchical 

structure in AI is assumed and it would be interesting 

if this paper extends that symbolic processing down 

into low-level binary functions. Newell and Simon 

[12] also supported a symbolic approach. With their 

‘Physical Symbol System Hypothesis’ they noted 

that:   

  ‘Symbols lie at the root of intelligent action, 

which is, of course, the primary topic of Artificial 

Intelligence. For that matter, it is a primary question 

for all of Computer Science. For all information is 

processed by computers in the service of ends, and 

we measure the intelligence of a system by its ability 

to achieve stated ends in the face of variations, 

difficulties and complexities posed by the task 

environment.’ 

They therefore stated the need for a symbolic 

representation of the environment, so that a 

computer can understand it, and this requires some 

sort of formal specification or logic. However, a 

universal machine that can create, understand and 

use these symbols remains a problem to be solved.  

The earlier part of this paper has suggested how 

symbols might be converted across into computer 

hardware [3]. Specifically, that would be the Central 

Processing Unit (CPU) and the Arithmetic and Logic 

Unit (ALU) that performs the mathematical 

calculations. The binary system is used in computers 

because it works very well and is easier to 

implement. The simple 2-value system is not prone 

to error. Logic gates can produce these on-off values 

very easily and while a ternary gate with 3 states has 

been suggested [1][13][14], it has never been 

implemented because of the complexity with 

analogue output values. In fact, it is still considered 

to be unworkable and some research suggests using 

it for special purposes only. The symbolic 

representation of this paper however can probably be 

realised in a binary system and the actual maths can 

also be performed using the binary number system. 

While there is another level of complexity, it can 

probably be broken down into binary operations as 

well. The main question would be if the new level of 

complexity would require too many additional 

operations to be economical. 

It is interesting that fractals [10][4] have been 

written about earlier [7] in terms of natural systems 

relating to the human brain, and the research of this 

paper has resulted in a similar type of argument. 

There are two transitions that could be measured. 

One is for the divisor part (d1, d2, … in Equation 3), 

moving from one value to the next and the other is 

for the result part (r1, r2, … in Equation 3) of each 

calculation. This has been taken to a whole new level 

in [15] that describes all sorts of fractal properties in 

biology. Interesting might be the emergence of a 

binary code from more complicated data and also the 

use of the Fibonacci series. The new fractal has the 

characteristic of a Fibonacci series. 

There is lots of evidence from earlier work that 

smooth transitions are more desirable in terms of 

energy consumption and entropy, or disruption 

[6][7]. The system prefers to work in a less 

disruptive state, but the disruption can become 

significant and may even help to define separate 

stages. It is the case that fractals in nature start with 

a larger value and transition smoothly to smaller and 

smaller variations. This would be useful for 

cognitive processes, where the first task would 

receive the largest signal but also be the most 

important, leading to further tasks maybe even 

further in time being represented by smaller signals. 

If there is a jump to a larger signal again, then maybe 

that is a milestone that should be achieved, before 

working out what to do from there on. The idea 

therefore, is that measuring the transition amounts 

can provide some level of guidance, and summing to 

the original energy total is a constraint for how sub-

patterns should organise themselves. A sequence of 

patterns is just that – a line of patterns where the first 

one should be the strongest and the final one the 

weakest. The idea of a chain equation, but more 

probably a number series is also used in [5] with 

relation to evaluating behaviours, and therefore it is 

a similar but slightly different equation. 

 

6 Conclusions 
This paper has made suggestions as to how the 

brain can be helped to perform fundamental maths 

through the use of symbols. It is not unreasonable to 

include sensory input, because otherwise the brain is 

blind. The system would not just count numbers in a 

traditional sense, but manipulate symbols as well. A 

key result of this is that the more difficult maths is 

restricted to relatively small operations, while the 

larger calculations are replaced by symbolic 

transpositions. If this works for the decimal number 

system, then it should probably work for any number 

system and because it is still essentially a bitwise 

process, algorithms that a CPU might use, for 

example, have been described. The difficulty with 

the ternary system is a well-researched area, but the 

logic of this paper is very easy to understand. 

Perhaps the ternary systems still process a single 

signal stream and therefore have to use an analogue 

signal to represent the 3 values, and this gives 

problems with logic gates and such things. The 
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bitwise table of Figure 1 shows that the problem can 

be extended horizontally and therefore keep it as 

essentially a binary problem. Each number ‘part’ can 

be a symbol that is on or off, for example. It is more 

likely that the swapping between binary and the base 

number system will cause problems. Appendix A, 

Figure 6, for example, shows the number 14 in a cell. 

The new architecture might use another level to store 

a binary representation of the cell value, or an extra 

bit, and so this would at least be another level of 

complexity. But it is part of the architecture that the 

base numbers should extend into other symbols at 

possible higher levels of the CPU. 

Then a new equation has been realised that looks 

like it could be a fractal. The equation could help 

with measuring an unknown quantity by comparing 

it with similar known quantities. It is suggested that 

this type of comparison can be a guidance to how the 

brain may link-up and fire patterns. It is obvious that 

the brain cannot consume more energy than is put 

into it, but the equation may help to establish a more 

measured approach as to how that energy gets used. 

Any set of sub-components must equate to the 

enclosing parent component in terms of some 

resource and so this is a constraint on how the sub-

components can organise themselves and fire 

together. 
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Appendix A – Some Examples 
This appendix gives some worked examples 

of how a computer system might use the 

number table to perform fundamental 

mathematical operations. 

 

1. Addition Example: 55 + 150 = 205 

This is the fairly simple addition of two 

numbers. The numbers have been split into their 

orders of magnitude parts and added to the grid, 

shown below in Figure 2. Note that the cell [2, 

6] has 2 entries, one for the number and one for 

the addendum. The Maths takes place over cell 

[2, 6]. This leads to a value of 10 for that cell.  

As the value 10 is 2 digits, it moves that cell up 

to the next level, to the 1 digit or cell [3, 2] 

position, as shown in Figure 3.  

That leads to cell [3, 2] having 2 entries, 

when another addition operation is required to 

add them together. This leads to a value of 2 for 

that cell, moving it one position to the right, as 

shown in Figure 4. 

There is no more maths to perform, so it is a 

matter of dropping the cell values down into 

their correct positions, which leads to the result 

of 205. 

 

 
  1 2 3 4 5 6 7 8 9 10 

8 10000000’s 0 1 2 3 4 5 6 7 8 9 

7 1000000’s 0 1 2 3 4 5 6 7 8 9 

6 100000’s 0 1 2 3 4 5 6 7 8 9 

5 10000’s 0 1 2 3 4 5 6 7 8 9 

4 1000’s 0 1 2 3 4 5 6 7 8 9 

3 100’s 0 1 2 3 4 5 6 7 8 9 

2 10’s 0 1 2 3 4 5 6 7 8 9 

1 Units 0 1 2 3 4 5 6 7 8 9 

 

Figure 2. Cells for the addition sum. Note that cell [2, 6] has 2 entries. 

 
  1 2 3 4 5 6 7 8 9 10 

8 10000000’s 0 1 2 3 4 5 6 7 8 9 

7 1000000’s 0 1 2 3 4 5 6 7 8 9 

6 100000’s 0 1 2 3 4 5 6 7 8 9 

5 10000’s 0 1 2 3 4 5 6 7 8 9 

4 1000’s 0 1 2 3 4 5 6 7 8 9 

3 100’s 0 1 2 3 4 5 6 7 8 9 

2 10’s 0 1 2 3 4 5 6 7 8 9 

1 Units 0 1 2 3 4 5 6 7 8 9 

 

Figure 3. Occupied cells after adding the 50 cells together. Note that cell [3, 2] has 2 entries. 

 

 
  1 2 3 4 5 6 7 8 9 10 

8 10000000’s 0 1 2 3 4 5 6 7 8 9 

7 1000000’s 0 1 2 3 4 5 6 7 8 9 

6 100000’s 0 1 2 3 4 5 6 7 8 9 

5 10000’s 0 1 2 3 4 5 6 7 8 9 

4 1000’s 0 1 2 3 4 5 6 7 8 9 

3 100’s 0 1 2 3 4 5 6 7 8 9 

2 10’s 0 1 2 3 4 5 6 7 8 9 

1 Units 0 1 2 3 4 5 6 7 8 9 

 

Figure 4. Occupied cells after adding the 100 cells together. 
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2. Subtraction Example: 10450 – 555 = 

9895 

This example subtracts 555 from 10450. The 

numbers have been split into their orders of 

magnitude parts and added to the grid, shown 

below in Figure 5. Note that the cell [2, 6] again 

has 2 entries, one for the minuend and one for 

the subtrahend. The maths takes place over the 

rows 2 and 3 in this case. Moving from the 

higher orders of magnitude to the lower ones, 

the first row to be processed is row 3, but this 

requires the number 5 to be subtracted from the 

number 4.  

Because the minuend is in a lower cell, it 

needs to borrow a value from a higher cell. It 

can borrow from the level 5 cell, and then add a 

new entry at each 9-digit cell for the level in-

between, as shown in Figure 6.  

 

 
  1 2 3 4 5 6 7 8 9 10 

8 10000000’s 0 1 2 3 4 5 6 7 8 9 

7 1000000’s 0 1 2 3 4 5 6 7 8 9 

6 100000’s 0 1 2 3 4 5 6 7 8 9 

5 10000’s 0 1 2 3 4 5 6 7 8 9 

4 1000’s 0 1 2 3 4 5 6 7 8 9 

3 100’s 0 1 2 3 4 5 6 7 8 9 

2 10’s 0 1 2 3 4 5 6 7 8 9 

1 Units 0 1 2 3 4 5 6 7 8 9 

 

Figure 5. Cells for the subtraction sum. Note that cell [2, 6] has 2 entries.

 
  1 2 3 4 5 6 7 8 9 10 

8 10000000’s 0 1 2 3 4 5 6 7 8 9 

7 1000000’s 0 1 2 3 4 5 6 7 8 9 

6 100000’s 0 1 2 3 4 5 6 7 8 9 

5 10000’s 0 1 2 3 4 5 6 7 8 9 

4 1000’s 0 1 2 3 4 5 6 7 8 9 

3 100’s 0 1 2 3 14 5 6 7 8 9 

2 10’s 0 1 2 3 4 5 6 7 8 9 

1 Units 0 1 2 3 4 5 6 7 8 9 

 

Figure 6. Occupied cells after borrowing a 100’s unit from the 10000’s level.

The maths can then be carried out at level 3, 

which leads to a total value of 9 there. At level 

2 the maths cancels the two digits out, leading 

to a total value of zero, as shown in Figure 7. 

There is still a value of 5 to subtract at the 

units level. There is no minuend at this level and 

so the minuend needs to borrow a value from a 

higher level, which is level 3 in this case. That 

moves the level 3 cell one place to the left and 

adds a new cell at digit 9 in level 2. The units 

level now contains 10 – 5, in terms of cell 

placings it could also be worked out, but the 

result is the cell digit 5. This final result is 

shown in Figure 8. 

There is no more maths to perform, so it is a 

matter of dropping the cell values down into 

their correct positions, which leads to the result 

of 9895. 

 

 
  1 2 3 4 5 6 7 8 9 10 

8 10000000’s 0 1 2 3 4 5 6 7 8 9 

7 1000000’s 0 1 2 3 4 5 6 7 8 9 

6 100000’s 0 1 2 3 4 5 6 7 8 9 

5 10000’s 0 1 2 3 4 5 6 7 8 9 
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4 1000’s 0 1 2 3 4 5 6 7 8 9 

3 100’s 0 1 2 3 4 5 6 7 8 9 

2 10’s 0 1 2 3 4 5 6 7 8 9 

1 Units 0 1 2 3 4 5 6 7 8 9 

 

Figure 7. Occupied cells after subtractions at levels 3 and 2.

 
  1 2 3 4 5 6 7 8 9 10 

8 10000000’s 0 1 2 3 4 5 6 7 8 9 

7 1000000’s 0 1 2 3 4 5 6 7 8 9 

6 100000’s 0 1 2 3 4 5 6 7 8 9 

5 10000’s 0 1 2 3 4 5 6 7 8 9 

4 1000’s 0 1 2 3 4 5 6 7 8 9 

3 100’s 0 1 2 3 4 5 6 7 8 9 

2 10’s 0 1 2 3 4 5 6 7 8 9 

1 Units 0 1 2 3 4 5 6 7 8 9 

 

Figure 8. Occupied cells after subtractions at levels 1. 

 

 

3. Multiplication Example: 40 x 50 = 2000 

This is a multiplication example of 40 times 

50: These numbers are 4 and 5 at the ten’s level, 

as indicated by having only 1 zero in each 

number. It is therefore noted that to multiply by 

50 means to multiply by the base operator 10, 

as indicated by the single zero and also by the 

unit operator 5. The base operation would move 

the number to be multiplied up 1 level in the 

table, when the 4 in the 10’s level moves to the 

4 in the 100’s level. The problem in terms of 

maths is now reduced to ‘4 times 5’. This gives 

the value 20 and that ‘symbol’ should replace 

the ‘symbol’ 4 in the current number 400, 

leading to a result value of 2000. 

 

4. Multiplication Example: 2507 x 852 = 

2135964 

This is a much more complicated 

multiplication example that would use different 

parts of the table and so number parts would 

need to be indexed as well. The base orders can 

be recognised by the number of digits in the 

number and any digit that is not zero has to be 

separated into a distinct part. Therefore, the first 

step is to break these two numbers down into: 

 

(2000, 500 and 7) × (800, 50 and 2), leading 

to the following equation: 

(2000 × 800) + (2000 × 50) + (2000 × 2) + 

(500 × 800) + (500 × 50) + (500 × 2) + (7 × 

800) + (7 × 50) + (7 × 2). 

 

Rather like a matrix, all parts of the 

multiplicand are multiplied by the multiplier. 

The larger numbers are further broken down 

into orders of magnitude and the remainders, 

represented by the non-zero digit and order of 

magnitude d(m), leading to the following 

equation: 

 

(2(3) × 8(2)) + (2(3) × 5(1)) + (2(3) × 2) + 

(5(2) × 8(2)) + (5(2) × 5(1)) + (5(2) × 2) + (7 

× 8(2)) + (7 × 5(1)) + (7 × 2). 

 

These could be placed in the appropriate 

cells and multiplied and added as the algorithm 

of section 3.4 indicates, but it leads to the 

following equation: 

 

16(5) + 10(4) + 4(3) + 40(4) + 25(3) + 10(2) 

+ 56(2) + 35(1) + 14. 

 

As all multiplications are at the unit level, 

they have to be carried out as whole operations, 

but they then replace the ‘symbol’ in the 

number that is the multiplicand. This leads to 

the following equation: 

 

(16)00000 + (10)0000 + (4)000 + (40)0000 

+ (25)000 + (10)00 + (56)00 + (35)0 + (14). 

 

This would be broken down into parts again 

and multiple cells at a level added together, 

before new additions are repeated. Simply 
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placing these values in the number leads to a 

final result of 2135964. 

 

5. Division Example: 2075 / 25 = 83 

This is a division example of 275 divided by 

25. The divisor of 25 cannot be broken down 

into 20 and 5 and so it is only possible to break 

the dividend down into 2000, 70 and 5. Then it 

is a matter of dividing each of these by 25. 

 

• The number 2000 can be moved down a 

level to 200 and still stay above the divisor 

value of 25. So the division maths is done 

over these two numbers, leading to a result 

of 8(1). 

• The number 70 cannot be moved down a 

level and so it must be divided directly 

leading to a result of 2 remainder 20. 

• The number 5 cannot be divided by 25 and 

leads to a remainder of 5. 

 

After this phase, there is a result value of 

8(1) and 2, plus a remainder value of 20 and 5. 

Adding the remainders together means that they 

can maybe be divided again, leading to: 20 + 5 

= 25 / 25 = 1 with no remainder. The 2 and the 

1 in the Units row would then be added 

together, to give a total of 3. 

This gives the final result parts of 80 and 3, 

leading to a final result of 83. 
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